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A Complete E-Plane Analysis of Waveguide
Junctions Using the Finite Element Method

VASSILIOS N. KANELLOPOULOS AND J. P. WEBB, MEMBER, I1EEE

Abstract — A complete finite element analysis of inhomogeneous E -plane
waveguide junctions is presented. It is shown that at least two field
components are needed for the analysis. This method solves for the three
components of the magnetic field in two dimensions, and calculates the
scattering parameters of the junction. Precalculated matrices are used for
fast matrix assembly. Results for a metallic post agree very well with
earlier published values. A dielectric post was also analyzed.

I. INTRODUCTION

F THE NUMERICAL methods available for deter-

mining the scattering parameters of a waveguide
junction, certain computer techniques have the advantage
that they can handle arbitrarily shaped regions. However
the general waveguide junction is three-dimensional and its
analysis with these techniques requires a considerable ef-
fort in order to define the geometry of the problem in
three dimensions, as well as a great deal of computer
memory and time. It is worthwhile, therefore, to consider
some useful subclasses of problems which are essentially
two-dimensional. In these problems, the variation of the
field is known in one coordinate direction and the analysis
can be done in two dimensions. For the case of rectangular
waveguide junctions, there are two major categories of
problems that can be analyzed in two dimensions [1]:

1) analysis in the H plane [2]-[8] ( H-plane junctions),
ii) analysis in the E plane ( E-plane junctions).

Interest in E-plane junctions was first shown by Lewin
in the late 1940°s [9]. More recent papers on E-plane
junctions include [10] and [12]-[14]. Examples of E-plane
junctions are E-plane bends; T junctions; capacitive posts
and irises [1]; tapers and transitions from one width to
another [9]; phase shifters; filters [15], [16]; and power
dividers [17]. Lately, there has been interest in the applica-
tions of the nonradiative dielectric (NRD) waveguide T
junction in microwave and millimeter-wave integrated cir-
cuits [18]. The analysis of this is closely related to that of
an E-plane rectangular waveguide junction.

In homogeneous E-plane problems, there is no x com-
ponent of electric field, and a scalar formulation in terms
of H, is possible, very similar to the E, formulation for
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H-plane problems. This has prompted some authors [6],
[10] to claim that FE-plane junctions can in general be
treated in much the same way as H-plane junctions. How-
ever in E-plane problems involving dielectric obstacles, E,
is not zero. despite the fact that this component is not
present in the incident TE,; wave. This fact was pointed
out by Schwinger and Saxon [5] and is shown mathemati-
cally in the following section. A consequence, also demon-
strated in the next section, is that the analysis of a general,
inhomogeneous E-plane junction involves at least two,
coupled variables. Koshiba er al. [10] managed to analyze
E-plane junctions as scalar problems, but their method
works only in two special cases: a) an inhomogeneous
junction of parallel-plate waveguides where the excitation
is a TEM mode, and b) a homogeneous E-plane junction
of rectangular waveguides. Their method cannot correctly
analyze the inhomogeneous E-plane junction.

In this paper, we present a new method which is not
restricted in this way. The method can analyze arbitrarily
shaped, inhomogeneous E-plane junctions. It was success-
fully tested with various simple problems where analytical
solutions were available. It was also used to find the
scattering coefficients of more complicated problems. Here,
we present results of the analysis of E-plane metallic and
dielectric posts in rectangular waveguides. Our results agree
very well with those published for a metallic post in [1].
However, no comparison was possible for the case of the
dielectric post, since no results have been published previ-
ously for this case.

II. MATHEMATICAL FORMULATION FOR
E-PLANE JUNCTIONS

The analysis of E-plane junctions takes place in the
plane of the electric field of the dominant mode of the
waveguides. The junction is translationally symmetric along
the x coordinate direction. It is assumed that only the
dominant mode TE,, can propagate in each waveguide,
and is incident upon the junction.

It is known that in the junction (Fig. 1) higher modes
are excited so that the field satisfies the boundary condi-
tions on the conductors and dielectric interfaces. The ports
(Fig. 1) are defined as reference planes far away from the
junction, where it is assumed that all the higher modes
have been strongly attenuated and only the dominant
mode is present. This attenuation is due to the fact that the
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Fig. 1. A three-port inhomogeneous E-plane junction of rectangular

waveguides.

rectangular waveguides connected to the junction can sup-
port only the dominant mode. Because of the existing
translational symmetry of the junction, the variation of the
electromagnetic field in the x direction is the same as that
of the dominant mode (which is known). Thus, only the
TE,, (n=0,1,2,---) and TM,,, (m=1,2, - - - ) modes can
be excited. The analysis, therefore, can be carried out in
two dimensions y and z, and the magnetic field can be
expressed as

w
H((x,y,z)=H/y, z)sin(—x)
a

7
H/(x,y,z)=H,(y, z)cos(——x)
. a

1)

T
H,(x,,2) = H(y,2)o0s| Zx)
, a
where a is the broad dimension of the waveguides,

A. Homogeneous E-Plane Junction: The Scalar Problem

In this case only one dielectric material is present in the
junction; i.e., €, is constant everywhere in the junction and
no dielectric interfaces are present. Then, the problem can
be solved with just one component (H,). This is shown
below.

The vector Helmholtz equation for the magnetic field
can be rewritten as

V2H,+ k2H,=0 (2a)
(2b)

where the subscript ¢ denotes the component in the y-z
plane and k, is given by the expression

ViH, +kXH, =0

ka

2
k=eki—(Z)

with ¢, being the relative permittivity of the medium and
k, the normalized frequency, w/c, where w is the angular
frequency and ¢ the velocity of light in vacaum.

The scalar equation (2b) gives a unique solution for H,
alone, when the following boundary conditions are ap-
plied:
dH,

dan

An expression similar to (2b) holds for the x component of

H =H, or =0.

(2)

(2d)

Fig. 2. A dielectric interface.

the electric field:
V7E.+k/E =0 (3
where again a unique solution is provided for E, with

E—E dE,
= or _—
X C an

However, for the E-plane junction, we know that E, =0 at
the ports. Thus, E, =0 everywhere in the junction.

It can be shown that the y—z (denoted as 7) magnetic
field component is given by ‘

on the boundaries.

it @

where a,, is the unit vector in the x direction. Since E, =0,
equation (4) reduces to

1 /7
n-(Zom). .

Thus, once H, has been computed, the rest of the mag-
netic field can be found from it.

V. H, + jweev,E, X ax)
a

B. Inhomogeneous E-Plane Junction: The Vector Problem

In this case, more than one region of constant permittiv-
ity €, is present in the junction and dielectric interfaces
exist over the E plane. (A continuously varying e, could
be modeled as a piecewise-constant permittivity.) It will be
shown that, in general, the dielectric interfaces excite the
E_ component of the electric field, which is coupled to the
H_ component of the magnetic field. Thus, the analysis in
this case cannot be done in just one variable (H,).

At the dielectric interface shown in Fig. 2, let n and s be
unit normal and tangential vectors respectively. If we
assume that E_is zero everywhere in the junction, as we
did for the homogeneous case, then the y—z component of
the magnetic field is given by (5). Since the tangential
component of the transverse magnetic field is continuous
across dielectric interfaces, the right-hand side of the fol-
lowing equation should be continuous too: \

1 /7

H,-s= e ( - (6)

The term in the brackets is indeed continuous. However

the parameter k, is not because it depends on the permit-

tivity (see (2c)). Therefore, (5) is not valid and the assump-

tion that E, is zero is wrong. Thus, we come to the

conclusion that at dielectric interfaces the component E,

of the electric field is excited in order for the interface
conditions to be satisfied.

V,Hx-s) .
a
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Further, not only are H, and E_ both nonzero, but they
are coupled together. This can be shown from the continu-
ity condition of the magnetic field across the interfaces:

Ht‘n|€1=}1t'n|cz' (7)
After some algebra, this gives

1 9H,| 1 9H,
lc—,21 an | k2 on

5]

From the above equation we can see that the behavior of
H_ across an interface depends on the change of E, along
that interface.

Note that (2b) is still correct in each uniform region, and
the boundary conditions (2d) still hold. However,

0H,
on

is no longer continuous (from (8)), so (2b) and (2d) are not
sufficient to determine H,.

Although two variables, H_and E,, are sufficient, the
new method uses the three components of the magnetic
field as the unknowns. The three-component approach has
been shown to be very successful in the analysis of wave-
guide modes [20].

I1I. FINITE ELEMENT ANALYSIS AND THE

COMPUTER PROGRAM

For linear, nonmagnetic, isotropic, lossless materials and
for time-harmonic fields the suggested functional is [21]

F(H) =/V{(V XH*)}(V xH)—kéH*-H} av (9)

where V' is the volume of the junction. The stationary
point of the above functional is the unique solution of the
problem, subject to the boundary conditions [21]

HXn=0 and HXn=H,Xn

(10)
on perfect magnetic conductors and ports respectively. The
integration along the x coordinate can be done analytically
(see (1)); thus the volume integral in (9) reduces to a
surface integral over the cross section € of the junction in
the y -z plane. The region {2 is divided into triangles, and
the usual finite-element polynomial trial functions [22] are
used for each component of the magnetic field. After the
discretization of the functional (9) and applying the
boundary conditions [23], the problem reduces to the equa-
tion
[WIlH] = [5].

Here [W] is an N X N real, symmetric matrix; [H] is an
N X1 matrix containing the values of the three compo-
nents of the magnetic field at the nodes of the mesh; and
[b]is an N X1 matrix which results from the enforcement
of the boundary conditions (10).

A P-port junction may be characterized by a PX P

impedance matrix, which relates the normalized voltages
and currents at the ports [24]. One of the strengths of the
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Fig 3. Capacitive post (metallic or dielectric) in rectangular waveguide.
The height of the waveguide is b= 0.6 m and the broad dimension of
the waveguide is ¢ =1.0 m.
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Fig. 4. Amplitude of the scattering coefficient S;; versus the metallic
post diameter (refer to Fig 3) The operating frequency is k=41
rads/m.
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finite element method is that this impedance matrix can be
found from the functional, which is a stationary quantity.
Letting {,) be the bilinear form derived from (9) in the
obvious manner, it may be shown that each entry of the
impedance matrix is given by [23]
z,-- f%”“)* HOY,
0

i,j=1,---,P (11)

where 17, is the impedance of free space and H® is the
computed magnetic field when port i is excited with unit
current, the other P ~1 ports being short-circuited. The
calculation of the scattering matrix from the impedance
matrix is straightforward [24].

The finite element program uses up to and including
fourth-order polynomials. The program uses the precalcu-
lated K and L matrices [25] for fast matrix assembly and
stores only the nonzero entries of the sparse global matrix.
Some of the preprocessing and postprocessing work was
done with existing packages [26].

IV. RESULTS

A. Metallic Post

Results for the centrally placed metallic post in Fig. 3
are shown in Figs. 4 and 5. Marcuvitz’s equivalent circuit
[1] is valid in the wavelength range 2b/A, <1.0, A being
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Fig. 5. Amplitude of the scattering coefficient S;; versus the normal-
ized frequency k. The ratio of the metallic post diameter to the height
of the waveguide is D/b=(.333 (refer to Fig. 3).

the guide wavelength. He estimated his expressions to be
in error by a few percent in the range D/b < 0.1. Because
of these limitations, his results diverge from our computed
values for large posts (Fig. 4) and for higher frequencies
(Fig. 5).

The structure in Fig. 3 has two symmetry planes:

a) The symmetry plane T, which is also the reference
plane for the results presented. (Because of this sym-
metry, solving the two-port junction is equivalent to
solving two one-port half-problems [27].)

b) The symmetry plane which passes through the center
O of the junction and is parallel to the x—z plane.
This symmetry plane is an electric short circuit. Be-
cause of the two symmetries only one quarter of the
region had to be modeled.

For the solution of the problem, approximately 190
finite elements were used, which were concentrated near
the post where the field variations were expected to be the
greatest. For a given ratio D/b and operating frequency
k, and using second-order finite elements, the program
ran for approximately 12 min on a Microvax II under the
Ultrix operating system. The same problem solved with
third-order elements (about double the number of degrees
of freedom) gave scattering parameters which differed by
about 0.1 percent from the second-order values, suggesting
a high degree of convergence.

B. Dielectric Post

The only difference in the structure in this case is that
the post consists of dielectric and has no metallic parts.
The same symmétries apply. The region was divided into
205 finite elements. For a given ratio D/b and operating
frequency k, and using second-order finite elements, the
program ran for 18 min. Using third-order, the change in
the scattering parameters was 0.2 percent. The results are
shown in Figs. 6-9. Fig. 6 shows the y—z part of the
magnetic field. E, was computed from H using the ex-
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Fig. 6. The magnetic field distributiorr on the y-z plane near the
region of a dielectric post 1n a rectangular waveguide (refer to Fig. 3).
The symmetry plane T is an open circuit. The relative permittivity is
¢,=14.0, and the normalized frequency ky=4.2 rads/m. D/b=0.6
(refer to Fig. 3).

|
I
Fig. 7. Contour lines of E, near a dielectric post in a rectangular
waveguide (refer to Fig. 3). The symmetry plane T is an open circuit.
The relative permittivity is €, =14.0, and the normalized frequency is
ko= 4.2 rads/m. D/b=0.6 (refer to Fig. 3). The numbers in the plot
are the E, values (V/m) of two of the equipotential lines.

pression

3H,

9z

9H,
dy

JwegE, E =

Contour lines of E, are shown in Fig. 7. Note that E_ is
not zero near and within the dielectric object, even though
it is nearly zero ( ~107% V/m) on the port, as expected.
By contrast, the E, computed for the metallic post was
about 107° V/m everywhere.

We solved the problem using first-, second-, third-, and
fourth-order finite elements. The convergence of our re-
sults is shown in Figs. 8 and 9. Note that the third-order
results are almost the same as those of second order. The
difference in the results between third and fourth order
was negligible; therefore the fourth-order results are not
shown. There is a significant error in first-order results at
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Fig. 8. Amplitude of the scattering coefficient S); versus the normal-
ized frequency kq. D/b= 0.6 (refer to Fig. 3). The relative permittivity
is €, =14.0. The crosses are the calculated values of $;; using third-order
finite elements and the solid line is an interpolation through those
points. The circles and the squares are the calculated values using
second- and first-order finite elements respectively. The dashed line is
an interpolation through calculated values of $|; from scalar analysis
using second-order finite elements.
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Fig. 9. Phase of the scattering coefficient S;; versus the normalized
frequency k,. D/b=0.6 (refer to Fig. 3). The relative permittivity is
¢, =14.0. The crosses are the calculated values of S;; using third-order
finite elements and the solid line is an interpolation through those
points. The circles and the squares are the calculated values using
second- and first-order finite elements respectively. The junction shows
inductive and capacitive behavior within the tested frequency range.
The dashed line is an interpolation through calculated values of Sp;
from scalar analysis using second-order finite clements.

higher frequencies. This is because the variation of the
field is bigger at higher frequencies and the elements are
quite large compared to the guide wavelength. Fourth-order
corresponds, approximately, to 6150 degrees of freedom,
the third to 3500, the second to 1600, and the first to 450.

This problem was also analyzed with the scalar method
using the functional given in [10] and second-order ele-
ments. The results are shown in Figs. 8 and 9 (dashed line).
Note that the scalar method gives considerable errors. (The
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same scalar method applied to the metallic post gave
values identical to those obtained with the vector method,
as expected.)

V. CONCLUSIONS

A complete finite element analysis for E-plane rectangu-
lar waveguide junctions has been presented. It was shown
that E-plane problems can be analyzed as scalar problems
(by solving for the H, component of the magnetic field)
only if one dielectric material is present in the junction.
When different dielectric materials are present in the junc-
tion, the E, component of the electric field is not zero and
at least two variables, H  and E,, are required for the
analysis. The new method solves for the three components
of the magnetic field and finds the scattering parameters of
the junction. Since it is a finite element analysis, the
method can be used for arbitrarily shaped junctions with
arrays of any number of metallic or dielectric posts, of
arbitrary shape and location. For problems where previous
results were available, the results obtained were found to
be in very good agreement. In the case of dielectric post no
previous results were available, but the convergence in the
results as we moved from first to fourth order suggests that
they are accurate.
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