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A Complete 17-Plane Analysis of Waveguide
Junctions Using the Finite Element Method

VASSILIOS N. KANELLOPOULOS AND J. P. WEBB, MEMBER, IEEE

Abstract — A complete finite element analysis of inhomogeneous E -plaue

waveguide junctions is presented. It is shown that at least two field

components are needed for the anrdysis. This method solves for the three

components of the magnetic field in two dimensions, and calculates the

scattering parameters of the junction. Precalculated matrices are used for

fast matrix assembly. Results for a metalfic post agree very well with

earlier published values. A dielectric post was also analyzed.

I. INTRODUCTION

o

F THE NUMERICAL methods available for deter-

mining the scattering parameters of a waveguide

junction, certain computer techniques have the advantage

that they can handle arbitrarily shaped regions. However

the general waveguide junction is three-dimensional and its

analysis with these techniques requires a considerable ef-

fort in order to define the geometry of the problem in

three dimensions, as well as a great deal of computer

memory and time. It is worthwhile, therefore, to consider

some useful subclasses of problems which are essentially

two-dimensional. In these problems, the variation of the

field is known in one coordinate direction and the analysis

can be done in two dimensions. For the case of rectangular

waveguide junctions, there are two major categories of

problems that can be analyzed in two dimensions [1]:

i) analysis in the H plane [2]–[8] (H-plane junctions),

ii) analysis in the II plane (-E-plane junctions).

Interest in E-plane junctions was first shown by Lewin

in the late 1940’s [9]. More recent papers on -&plane

junctions include [10] and [12]–[14]. Examples of E-plane

junctions are ~-plane bends; T junctions; capacitive posts

and irises [1]; tapers and transitions from one width to

another [9]; phase shifters; filters [15], [16]; and power

dividers [17]. Lately, there has been interest in the applica-

tions of the nonradiative dielectric (NRD) waveguide T

junction in microwave and millimeter-wave integrated cir-

cuits [18]. The analysis of this is closely related to that of

an E-plane rectangular waveguide junction.

In homogeneous E-plane problems, there is no x com-

ponent of electric field, and a scalar formulation in terms

of HX is possible, very similar to the EY formulation for
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H-plane problems. This has prompted some authors [6],

[10] to claim that E-plane junctions can in general be

treated in much the same way as H-plane junctions. How-

ever in E-plane problems involving dielectric obstacles, Ex

is not zero, despite the fact that this component is not

present in the incident TEIO wave. This fact was pointed

out by Schwinger and Saxon [5] and is shown mathemati-

cally in the following section. A consequence, also demon-

strated in the next section, is that the analysis of a general,

inhomogeneous E-plane junction involves at least two,

coupled variables. Koshiba et al. [10] managed to analyze

-&plane junctions as scalar problems, but their method

works only in two special cases: a) an inhomogeneous

junction of parallel-plate waveguides where the excitation

is a TEM mode, and b) a homogeneous E-plane junction

of rectangular waveguides. Their method cannot correctly

analyze the inhomogeneous E-plane junction.

In this paper, we present a new method which is not

restricted in this way. The method can analyze arbitrarily

shaped, inhomogeneous E-plane junctions. It was success-

fully tested with various simple problems where analytical

solutions were available. It was also used to find the

scattering coefficients of more complicated problems. Here,

we present results of the analysis of E-plane metallic and

dielectric posts in rectangular waveguides. Our results agree

very well with those published for a metallic post in [1].

However, no comparison was possible for the case of the

dielectric post, since no results have been published previ-

ously for this case.

II. MATHEMATICAL FORMULATION FOR

E-PLANE JUNCTIONS

The analysis of E-plane junctions takes place in the

plane of the electric field of the dominant mode of the

waveguides. The junction is translationally symmetric along

the x coordinate direction. It is assumed that only the

dominant mode TEIO can propagate in each waveguide,

and is incident upon the junction.

It is known that in the junction (Fig. 1) higher modes

are excited so that the field satisfies the boundary condi-

tions on the conductors and dielectric interfaces. The ports

(Fig. 1) are defined as reference planes far away from the

junction, where it is assumed that all the higher modes

have been strongly attenuated and only the dominant

mode is present. This attenuation is due to the fact that the
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Fig. 1. A three-port inhomogeneous E-plane junction of rectangular
waveguides.

rectangular waveguides connected to the junction can sup-

port only the dominant mode. Because of the existing

translational symmetry of the junction, the variation of the

electromagnetic field in the x direction is the same as that

of the dominant mode (which is known). Thus, only the

TE1n(n=o,l,2,. . . ) and TMIM (m =1,2,.. . ) modes can

be excited. The analysis, therefore, can be carried out in

two dimensions y and z, and the magnetic field can be

expressed as

()
77

HX(x, y,z) =HX(y, z)sin jx

()
77

~., (x>Y>z) =qY, z)cos ;X (1)

()
T

Hz(x, y,z) =Hz(y, z)cos ;X

where a is the broad dimension of the waveguides.

A. Homogeneous E-Plane Junction: The Scalar Problem

In this case only one dielectric material is present in the

junction; i.e., c~ is constant everywhere in the junction and

no dielectric interfaces are present. Then, the problem can

be solved with just one component ( HX). This is shown

below.

The vector Helmholtz equation for

can be rewritten as

V~HX + k;HX = O

the magnetic field

(2a)

(2b)

where the subscript t denotes the component in the y – z

plane and k, is given by the expression

with c, being the relative permittivity of the medium and

k. the normalized frequency, cJ/c, where u is the angular

frequency and c the velocity of light in vacuum.

The scalar equation (2b) gives a unique solution for HX

alone, when the following boundary conditions are ap-

plied:

aHx
HX = HO or —=0.

8n
(2d)

An expression similar to (2b) holds for the x component of

Fig. 2. A dielectric interface.

the electric field:

v,%, + k;EX = O (3)

where again a unique solution is provided for EX with

i3EX
EX = Ec or — = O on the boundaries.

dn

However, for the E-plane junction, we lcnow that EO = O at

the ports. Thus, EX = O everywhere in the junction.

It can be shown that the y – z (denoted as t) magnetic

field component is given by

where ax is the unit vector in the x direction. Since EX = O,

equation (4) reduces to

(5)

Thus, once HX has been computed, the rest of the mag-

netic field can be found from it.

B. Inhomogeneou.s E-Plane Junction: The Vector Problem

In this case, more than one region of constant perrnittiv-

it y t, is present in the junction and dielectric interfaces

exist over the E plane. (A continuously varying 6, could

be modeled as a piecewise-constant permittivity.) It will be

shown that, in general, the dielectric interfaces excite the

EX component of the electric field, which is coupled to the

HX component of the magnetic field. Thus, the analysis in

this case cannot be done in just one variable (HX).

At the dielectric interface shown in Fig. 2, let n and s be

unit normal and tangential vectors lrespectively. If we

assume that EX is zero everywhere in the junction, as we

did for the homogeneous case, then the y – z component of

the magnetic field is given by (5). Since the tangential

component of the transverse magnetic field is continuous

across dielectric interfaces, the right-hand side of the fol-

lowing equation should be continuous 1oo: ,

‘“S=$(:VHX”S)(6)

The term in the brackets is indeed continuous. However

the parameter k~ is not because it depends on the permit-

tivity (see (2c)). Therefore, (5) is not valid and the assump-

tion that EX is zero is wrong. Thus, we come to the

conclusion that at dielectric interfaces the component EX

of the electric field is excited in order for the interface

conditions to be satisfied.
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Further, not only are HX and EX both nonzero, but they

are coupled together. This can be shown from the continu-

it y condition of the magnetic field across the interfaces:

H,.lZl,l=H,. nl,2. (7)

After some algebra, this gives

1 dHX 1 8HX

()

a dEX c., c,,

k; an ,, – k; an
=jucO; T ~–P . (8)

62 ~2 21

From the above equation we can see that the behavior of

HX across an interface depends on the change of EX along

that interface.

Note that (2b) is still correct in each uniform region, and

the boundary conditions (2d) still hold. However,

8HX

8n

is no longer continuous (from (8)), so (2b) and (2d) are not

sufficient to determine HX.

Although two variables, HX and EX, are sufficient, the

new method uses the three components of the magnetic

field as the unknowns. The three-component approach has

been shown to be very successful in the analysis of wave-

guide modes [20].

III. FINITE ELEMENT ANALYSIS AND THE

COMPUTER PROGRAM

For linear, nonmagnetic, isotropic, lossless materials and

for time-harmonic fields the suggested functional is [21]

F(H) =~{(Vx H*)3(Vx H)–k&I*. H
}

dV (9)
v <r

where V is the volume of the junction. The stationary

point of the above functional is the unique solution of the

problem, subject to the boundary conditions [21]

Hxn=O and Hxn=Hoxn (lo)

on perfect magnetic conductors and ports respectively. The

integration along the x coordinate can be done analytically

(see (l)); thus the volume integral in (9) reduces to a

surface integral over the cross section $1 of the junction in

the y – z plane. The region Q is divided into triangles, and

the usual finite-element polynomial trial functions [22] are

used for each component of the magnetic field. After the

discretization of the functional (9) and applying the

boundary conditions [23], the problem reduces to the equa-

tion

[W][H] = [b].

Here [W] is an N x N real, symmetric matrix; [H] is an

N x 1 matrix containing the values of the three compo-

nents of the magnetic field at the nodes of the mesh; and

[b] is an N X 1 matrix which results from the enforcement

of the boundary conditions (10).

A P-port junction may be characterized by a P x P

impedance matrix, which relates the normalized voltages

and currents at the ports [24]. One of the strengths of the
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Fig 3. Capacitive post (metallic or dielectric) in rectangular waveguide.

The height of the wavegulde is b = 0.6 m and the broad dimension of

the waveguide is a = 1.0 m.
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Fig. 4. Amplitude of the scattering coefficient SIl versus the metallic

post diameter (refer to Flg 3) The operating frequency is /c.=41
rads/m.

finite element method is that this impedance matrix can be

found from the functional, which is a stationary quantity.

Letting (,) be the bilinear form derived from (9) in the

obvious manner, it may be shown that each entry of the

impedance matrix is given by [23]

Zij = – j;(H(iJ,H(~)), i,j=l,. ... P (11)

o

where qO is the impedance of free space and H(’) is the

computed magnetic field when port i is excited with unit

current, the other P – 1 ports being short-circuited. The

calculation of the scattering matrix from the impedance

matrix is straightforward [24].

The finite element program uses up to and including

fourth-order polynomials. The program uses the precalcu-

lated K and L matrices [25] for fast matrix assembly and

stores” only the nonzero entries of the sparse global matrix.

Some of the preprocessing and postprocessing work was

done with existing packages [26].

IV. RESULTS

A. Metallic Post

Results for the centrally placed metallic post in Fig. 3

are shown in Figs. 4 and 5. Marcuvitz’s equivalent circuit

[1] is valid in the wavelength range 2b/A, <1.0, A. being
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Fig. 5. Amplitude of the scattering coefficient SIl versus the normal-
ized frequency ko. The ratio of the metallic post diameter to the height
of the waveguide is D/b= 0.333 (refer to Fig. 3).

the guide wavelength. He estimated his expressions to be

in error by a few percent in the range D/b <0.1. Because

of these limitations, his results diverge from our computed

values for large posts (Fig. 4) and for higher frequencies

(Fig. 5).

The structure in Fig. 3 has two symmetry planes:

a)

b)

The symmetry plane T, which is also the reference

plane for the results presented. (Because of this sym-

metry, solving the two-port junction is equivalent to

solving two one-port half-problems [27].)

The symmetry plane which passes through the center

O of the junction and is parallel to the x –z plane.

This symmetry plane is an electric short circuit. Be-

cause of the two symmetries only one quarter of the

region had to be modeled.

For the solution of the problem, approximately 190

finite elements were used, which were concentrated near

the post where the field variations were expected to be the

greatest. For a given ratio D/b and operating frequency

k. and using second-order finite elements, the program

ran for approximately 12 rnin on a Microvax II under the

Ultrix operating system. The same problem solved with

third-order elements (about double the number of degrees

of freedom) gave scattering parameters which differed by

about 0.1 percent from the second-order values, suggesting

a high degree of convergence.

B. Dielectric Post

The only difference in the structure in this case is that

the post consists of dielectric and has no metallic parts.

The same symmetries apply. The region was divided into
205 finite elements. For a given ratio D/b and operating

frequency kO and using second-order finite elements, the

program ran for 18 min. Using third-order, the change in

the scattering parameters was 0.2 percent. The results are

shown in Figs. 6–9. Fig. 6 shows the y – z part of the

magnetic field. EX was computed from H using the ex-
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FiK. 6. The magnetic field distribution on the v– z plane near the
~egion of a die~ctric post m a rectangular waveg”tide (~efer to Fig. 3).
The symmetry plane 7’ is an open circuit. The relative permittivity is

c.= 14.0, and the normalized frequency ,kO= 4.2 rads/m. D/b= 0.6

(refer to Fig. 3).

I
I

Fig. 7. Contour lines of Ey near a dielectric post in a rectangular

waveguide (refer to Fig. 3). The symmetry plane T is an open cmcuit.

The relative permittivity is c,= 14.0, and the normalized frequency is

k.= 4.2 rads/m. D/b= 0.6 (refer to Fig. 3), The numbers in the plot

are the Ex values (V/m) of two of the equipotential lines.

pression

dH, dH
jococ,Ex = ~ – ~y.

Contour lines of EX are shown in Fig, 7. Note that EX is

not zero near and within the dielectric object, even though

it is nearly zero ( -10- c V/m) on the port, as expected.

By contrast, the EX computed for the metallic post was

about 10 – c V/m everywhere.

We solved the problem using first-, second-, third-, and
fourth-order finite elements. The convergence of our re-

sults is shown in Figs. 8 and 9. Note that the third-order

results are almost the same as those of second order. The

difference in the results between third and fourth order

was negligible; therefore the fourth-order results are not

shown. There is a significant errclr in first-order results at
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same scalar method applied to the metallic post gave

values identical to those obtained with the vector method,

as expected.)

V. CONCLUSIONS

A complete finite element analysis for E-plane rectangu-

lar waveguide junctions has been presented. It was shown

that E-plane problems can be analyzed as scalar problems

(by solving for the HX component of the magnetic field)

only if one dielectric material is present in the junction.

When different dielectric materials are present in the junc-

tion, the EX component of the electric field is not zero and

at least two variables, HX and EX, are required for the

analysis. The new method solves for the three components

of the magnetic field and finds the scattering parameters of

the junction. Since it is a finite element analysis, the

method can be used for arbitrarily shaped junctions with

arrays of any number of metallic or dielectric posts, of

arbitrary shape and location. For problems where previous

results were available, the results obtained were found to

be in very good agreement. In the case of dielectric post no

previous results were available, but the convergence in the

results as we moved from first to fourth order suggests that

they are accurate.

f’

normalized frequency ko (rads/m)

Fig. 9. Phase of the scattering coefficient Sll versus the normrdized
frequency ko. D/b= 0.6 (refer to Fig. 3). The relative permittivity is

c, = 14.0. The crosses are the calculated vahres of ,SIl using third-order
finite elements and the solid line is an interpolation through those

points. The circles and the squares are the calculated vaftres using

second- and first-order finite elements respectively. The junction shows
inductive and capacitive behavior within the tested frequency range.
The dashed line is an interpolation through calculated vatues of Sll
from scalar anafysis using second-order finite elements.

higher frequencies. This is because the variation of the

field is bigger at higher frequencies and the elements are

quite large compared to the guide wavelength. Fourth-order

corresponds, approximately, to 6150 degrees of freedom,

the third to 3500, the second to 1600, and the first to 450.

This problem was also analyzed with the scalar method

using the functional given in [10] and second-order ele-

ments. The results are shown in Figs. 8 and 9 (dashed line).
Note that the scalar method gives considerable errors. (The
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